2016-05-30

Why are heart disease and dental health related?

2015-05-17

Microbiome Nonsense: response to "Chowing Down On Meat"

Response to "Chowing Down On Meat"

As the claim that animal protein and saturated fat is unhealthy becomes less and less tenable, those who have the intuition that animal-based nutrition must be bad for you are looking elsewhere.

There was great excitement at the end of 2014 about a study posted in Nature demonstrating the rapid changes in human gut microbes in response to animal-based vs. plant-based diets [1]. The paper is very interesting, and it has a lot of original data of a kind we've often wished for. The authors then go on to interpret their findings without apparent restraint.

A report on the study on NPR called Chowing Down On Meat, Dairy Alters Gut Bacteria A Lot, And Quickly gets right to the point:

"Looks like Harvard University scientists have given us another reason to walk past the cheese platter at holiday parties and reach for the carrot sticks instead: Your gut bacteria will thank you."

and finally:

""I mean, I love meat," says microbiologist Lawrence David, who contributed to the study and is now at Duke University. "But I will say that I definitely feel a lot more guilty ordering a hamburger ... since doing this work," he says."

That's right. The excitement in the blog-o-sphere was not so much about the clear results — that the changes in the gut flora in response to diet are fast and large — but about the authors' opinions that the observed changes support a link between meat consumption and inflammatory bowel disease (IBD).

We take exception to these claims, as they are not well-founded by the data in the study, or in any other study. The data to support them do not warrant the conclusion. We consider it irresponsible at best to suggest that a dietary practice is harmful to health when the evidence is weak, especially when one is in a position of authority and subject to high publicity.

Here are the points we address:

The Claims about Inflammatory Bowel Disease

Here are some quotes from the paper stressing the possible dangers of a carnivorous diet based on a supposed link to IBD — inflammatory bowel disease. Notice that they use language that implies the claims are proven, when as we will show, they are not.

"increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease [6]" — Abstract

"Bile acids have been shown to cause inflammatory bowel disease in mice by stimulating the growth of the bacterium Bilophila[6], which is known to reduce sulphite to hydrogen sulphide via the sulphite reductase enzyme DsrA (Extended Data Fig. 10)." — from figure 5, page 4.

"Mouse models have also provided evidence that inflammatory bowel disease can be caused by B. wadsworthia, a sulphite-reducing bacterium whose production of H2S is thought to inflame intestinal tissue [6]. Growth of B. wadsworthia is stimulated in mice by select bile acids secreted while consuming saturated fats from milk. Our study provides several lines of evidence confirming that B. wadsworthia growth in humans can also be promoted by a high-fat diet. First, we observed B. wadsworthia to be a major component of the bacterial cluster that increased most while on the animal-based diet (cluster 28; Fig. 2 and Supplementary Table 8). This Bilophila-containing cluster also showed significant positive correlations with both long-term dairy (P , 0.05; Spearman correlation) and baseline saturated fat intake (Supplementary Table 20), supporting the proposed link to milk-associated saturated fats[6]. Second, the animal-based diet led to significantly increased faecal bile acid concentrations (Fig. 5c and Extended Data Fig. 9). Third, we observed significant increases in the abundance of microbial DNA and RNA encoding sulphite reductases on the animal-based diet (Fig. 5d, e). Together, these findings are consistent with the hypothesis that diet-induced changes to the gut microbiota may contribute to the development of inflammatory bowel disease." — last paragraph, emphasis ours.

This concern is prominent in the paper; they start with it and end with it. It is based on a single citation to a study in mice.

Reasons those claims are not warranted

Let's look at that study (Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice [2]):

Here's the abstract (emphasis ours):

"The composite human microbiome of Western populations has probably changed over the past century, brought on by new environmental triggers that often have a negative impact on human health1. Here we show that consumption of a diet high in saturated (milk-derived) fat, but not polyunsaturated (safflower oil) fat, changes the conditions for microbial assemblage and promotes the expansion of a low-abundance, sulphite-reducing pathobiont, Bilophila wadsworthia2. This was associated with a pro-inflammatory T helper type 1 (TH1) immune response and increased incidence of colitis in genetically susceptible Il10−/−, but not wild-type mice. These effects are mediated by milk-derived-fat-promoted taurine conjugation of hepatic bile acids, which increases the availability of organic sulphur used by sulphite-reducing microorganisms like B. wadsworthia. When mice were fed a low-fat diet supplemented with taurocholic acid, but not with glycocholic acid, for example, a bloom of B. wadsworthia and development of colitis were observed in Il10−/− mice. Together these data show that dietary fats, by promoting changes in host bile acid composition, can markedly alter conditions for gut microbial assemblage, resulting in dysbiosis that can perturb immune homeostasis. The data provide a plausible mechanistic basis by which Western-type diets high in certain saturated fats might increase the prevalence of complex immune-mediated diseases like inflammatory bowel disease in genetically susceptible hosts."

Translation:

They took some mice who were particularly susceptible to colitis, and also some regular mice, and fed them one of three different diets: a low fat diet (if we're reading it correctly they used the AIN-93M Purified Diet from harlan, which is about 10% fat), or a diet with 37% fat which was either polyunsaturated, or saturated milk fat. They didn't specify the amount of carbohydrate or protein, but we assume the diets were about 10-15% protein, leaving about 50% carbohydrate.

The mice who had the high milk-fat diet had a significant increase in the gut bacteria called Bilophila wadsworthia. The susceptible mice on the high milk-fat diet got colitis at a high rate (more than 60% in 6 months). The other susceptible mice, those on low-fat or polyunsaturated fat also got colitis, but at a lower rate (25-30%). The regular mice didn't get colitis, even on the high milk-fat diet.

What's the problem with knockout mice?

The mice that got colitis were susceptible because they were genetically manipulated to not function normally. Specifically, they couldn't produce something called interleuken-10 (IL-10). IL-10 has many complex actions including fighting against inflammation in multiple ways.

The argument made by the scientists is that Bilophila wadsworthia must induce inflammation, and that colitis probably comes about in people who are less effective at fighting that inflammation, just like the knockout mice. This seems intuitive, but it is certainly not proven by the experiment.

Look at it this way:

Suppose we didn't know the cause of phenylketonuria, a genetic disorder that makes the victim unable to make enzymes necessary to process the amino acid phenylalanine. We could knockout that gene in an animal, feed it phenylalanine, watch it suffer retardation and seizures, and conclude that phenylalanine must promote brain problems. This would be a mistake, of course. Phenylalanine is an essential amino acid occurring in breast milk. As far as we know, there is nothing unhealthy about it, as long as you don't have a genetic mutation interfering with its metabolism.

It is, of course, possible that Bilophila wadsworthia inflames the colon. As a hypothesis, based on this study, it is not by itself objectionable.

What we object to is the leap to citing Bilophila wadsworthia as causing colitis, as in the second excerpt above, which we repeat here:

"Bile acids have been shown to cause inflammatory bowel disease in mice by stimulating the growth of the bacterium Bilophila[6], which is known to reduce sulphite to hydrogen sulphide via the sulphite reductase enzyme DsrA (Extended Data Fig. 10)." — from figure 5, page 4.

In fact, Bilophila did not appear to affect the normal mice at all!

There is no claim that the genetic mutation in the mice has any relation to genetic susceptibility to IBS in humans, yet it is implied that natural human susceptibility might work the same way.

Hydrogen Sulfide

In the knockout mice study, a second experiment was done to determine whether the Bilophila wadsworthia seen in the milk-fat condition came from a particular bile acid, taurocholic acid. They fed the knockout mice a low fat diet supplemented with either taurocholic acid (TC), or glycocholic acid (GC). They confirmed that Bilophila wadsworthia was increased by taurocholic acid and not by glychocholic acid.

What else do we know about taurocholic acid?

According to the authors of this study, it is "a rich source of organic sulphur, […] resulting in the formation of H2S [hydrogen sulfide]". In one figure they even demonstrated the presence of Bilophila wadsworthia by the presence of H2S.

But H2S can be beneficial:

  • There is emerging evidence that H2S has diverse anti-inflammatory effects, as well as pro-inflammatory effects, possibly only at very high levels [3].
  • The levels needed for harm are probably higher than occurs naturally [4]
  • H2S levels in the blood are associated with high HDL, low LDL, and high adiponectin in humans [5], all considered good things.

Moreover, there is now evidence that colon cells in particular can actually use H2S as fuel, and lots of it. Other researchers have used a a similar argument in the opposite way. They claim that eating fiber is healthy, because of the butyrate generated from it in the colon, which colons cells then use as fuel. While we have problems with that argument, it shows a pervasive bias: Using it when it supports plants, but ignoring it when it doesn't.

Taking all this into account, it is not at all clear that the higher levels of sulfite reducing bacteria seen in the meat and cheese eaters was unhealthy.

What would happen if a human sufferer of IBS went on an animal foods only diet?

It's clear that these researchers are not studying IBS at all. They were studying gut bacteria, found an association, and cherry-picked one study suggesting that what they found in the animal diet results might be unhealthy.

If they were studying IBS, they might have noticed reasons to hypothesise that a diet low in fiber [6], [7], carbohydrates [8], or fermentable carbohydrates [9] would help IBS sufferers. If humans who are susceptible to IBS are susceptible in the same way as the knockout mice in the cited study, then these results might be surprising. Instead, these results in combination with the animal diet paper, should further decrease our belief that the mice results have any relevance at all.

Moreover, unless the authors are advocating a diet of low-fiber, low-carb plants (can't think of any plants like that off the top of my head...), they are encouraging IBS sufferers to eat foods that may worsen their condition.

We don't know what would happen in an all meat trial for IBS, but we'd love to find out.

In Sum

The supposed link between the animal diet and inflammatory bowel disease is composed of a chain of weak links:

A kind of bacteria they found in those eating meat and cheese was also found in a mouse study that suggested a link between the bacteria and IBS.

However:

  • It used animals that were genetically engineered to not function normally.
  • It did not and cannot establish causality between the observed gut bacteria changes and the increased level of disease.
  • It was merely an observation of the two coinciding along with a plausible mechanism, i.e. a clever story about how this might be a causal relationship.

This plausible mechanism is not as clean a story as it appears. Presenting it as such is downright misleading.

References

[1]

Diet rapidly and reproducibly alters the human gut microbiome

Lawrence A. David, Corinne F. Maurice, Rachel N. Carmody, David B. Gootenberg, Julie E. Button, Benjamin E. Wolfe, Alisha V. Ling, A. Sloan Devlin, Yug Varma, Michael A. Fischbach, Sudha B. Biddinger, Rachel J. Dutton & Peter J. Turnbaugh
Nature (2013) doi:10.1038/nature12820
[2]

Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice

Suzanne Devkota, Yunwei Wang, Mark W. Musch, Vanessa Leone, Hannah Fehlner-Peach, Anuradha Nadimpalli, Dionysios A. Antonopoulos, Bana Jabri & Eugene B. Chang
Nature (2012) doi:10.1038/nature11225
[3]

Evidence type: review and non-human animal experiment

Wallace JL.
Trends Pharmacol Sci. 2007 Oct;28(10):501-5. Epub 2007 Sep 19.

The notion of H2S being beneficial at physiological concentrations but detrimental at supraphysiological concentrations bears similarity to the situation with nitric oxide (NO), another gaseous mediator, which shares many biological effects with H2S. Also in common with NO, there is emerging evidence that physiological concentrations of H2S produce anti-inflammatory effects, whereas higher concentrations, which can be produced endogenously in certain circumstances, can exert pro-inflammatory effects [5]. Here, I focus on the anti-inflammatory effects of H2S, and on the concept that these effects can be exploited in the development of more effective and safer anti-inflammatory drugs. "

[4]

Evidence type: review and non-human animal experiment

Wallace JL.
Trends Pharmacol Sci. 2007 Oct;28(10):501-5. Epub 2007 Sep 19.

(Emphasis ours)

"How much H2S is physiological? "H2S is present in the blood of mammals at concentrations in the 30–100 m M range, and in the brain at concentrations in the 50–160 m M range [1–3]. Even after systemic administration of H2S donors at doses that produce pharmacological effects, plasma H2S concentrations seldom rise above the normal range, or do so for only a very brief period of time [24,27]. This is, in part, due to the efficient systems for scavenging, sequestering and metabolizing H2S. Metabolism of H2S occurs through methylation in the cytosol and through oxidation in mitochondria, and it is mainly excreted in the urine [1]. It can be scavenged by oxidized glutathione or methemoglobin, and can bind avidly to hemoglobin. Exposure of certain external surfaces andtissues to H2S can trigger inflammation [28], perhaps because of a relative paucity of the above-mentioned scavenging, metabolizing and sequestering systems. The highest concentrations of H2S in the body occur in the lumen of the colon, although there is some disagreement [29] as to whether theconcentrations of ‘free’ H2S really reach the millimolar concentrations that have been reported in some studies [30,31]. Although often alluded to [32,33], there is no direct evidence that H2S causes damage to colonic epithelial cells. Indeed, colonocytes seem to be particularly well adapted to use H2S as a metabolic fuel [4]. "There have been several suggestions that H2S might trigger mutagenesis, particularly in the colon. For example, one recent report [33] suggested that the concentrations of H2S in ‘the healthy human and rodent colon’ are genotoxic. Despite the major conclusion of that study, the authors observed that exposure of cultured colon cancer epithelial cells (i.e. transformed cells) to concentrations of Na2S as high as 2 mM for 72 hours did not cause any changes consistent with a genotoxic effect (nor cell death). It was only when the experiments were performed in the presence of two inhibitors of DNA repair, and only with a concentration of 2 mM, that they were able to detect a significant genotoxic signal. It is also important to bear in mind that the concentrations of H2S used in studies such as that described above are often referred to as those found in the ‘healthy’ colon. Clearly, if concentrations of H2S in the healthy colon do reach the levels reported, and if H2S has the capacity to produce genotoxic changes and/or to reduce epithelial viability, there must be systems in place to prevent the putative untoward effects of this gaseous mediator – otherwise, the colon would probably not be ‘healthy’"

[5]

Evidence type: observational

Jain SK, Micinski D, Lieblong BJ, Stapleton T.
Atherosclerosis. 2012 Nov;225(1):242-5. doi: 10.1016/j.atherosclerosis.2012.08.036. Epub 2012 Sep 10.

"Hydrogen sulfide (H2S) is an important signaling molecule whose blood levels have been shown to be lower in certain disease states. Increasing evidence indicates that H2S plays a potentially significant role in many biological processes and that malfunctioning of H2S homeostasis may contribute to the pathogenesis of vascular inflammation and atherosclerosis. This study examined the fasting blood levels of H2S, HDL-cholesterol, LDL-cholesterol, triglycerides, adiponectin, resistin, and potassium in 36 healthy adult volunteers. There was a significant positive correlation between blood levels of H2S and HDL-cholesterol (r=0.49, p=0.003), adiponectin (r=0.36, p=0.04), and potassium (r=0.34, p=0.047), as well as a significant negative correlation with LDL/HDL levels (r= -0.39, p=0.02). "

[6]

Evidence type: preliminary experiment

J. T. Woolner and G. A. Kirby
Journal of Human Nutrition and Dietetics Volume 13, Issue 4, pages 249–253, August 2000

"Abstract

Introduction High-fibre diets are frequently advocated for the treatment of irritable bowel syndrome (IBS) although there is little scientific evidence to support this. Experience of patients on low-fibre diets suggests that this may be an effective treatment for IBS, warranting investigation.

Methods Symptoms were recorded for 204 IBS patients presenting in the gastroenterology clinic. They were then advised on a low-fibre diet with bulking agents as appropriate. Symptoms were reassessed by postal questionnaire 4 weeks later. Patients who had improved on the diet were advised on the gradual reintroduction of different types of fibre to determine the quantity and type of fibre tolerated by the individual.

Results Seventy-four per cent of questionnaires were returned. A significant improvement (60–100% improvement in overall well-being) was recorded by 49% of patients.

Conclusion This preliminary study suggests that low-fibre diets may be an effective treatment for some IBS patients and justifies further investigation as a full clinical trial."

[7]

Evidence type: Review

Eswaran S1, Muir J, Chey WD.
Am J Gastroenterol. 2013 May;108(5):718-27. doi: 10.1038/ajg.2013.63. Epub 2013 Apr 2.

"Abstract

Despite years of advising patients to alter their dietary and supplementary fiber intake, the evidence surrounding the use of fiber for functional bowel disease is limited. This paper outlines the organization of fiber types and highlights the importance of assessing the fermentation characteristics of each fiber type when choosing a suitable strategy for patients. Fiber undergoes partial or total fermentation in the distal small bowel and colon leading to the production of short-chain fatty acids and gas, thereby affecting gastrointestinal function and sensation. When fiber is recommended for functional bowel disease, use of a soluble supplement such as ispaghula/psyllium is best supported by the available evidence. Even when used judiciously, fiber can exacerbate abdominal distension, flatulence, constipation, and diarrhea."

[8]

Evidence Type: uncontrolled experiment

Austin GL, Dalton CB, Hu Y, Morris CB, Hankins J, Weinland SR, Westman EC, Yancy WS Jr, Drossman DA.
Clin Gastroenterol Hepatol. 2009 Jun;7(6):706-708.e1. doi: 10.1016/j.cgh.2009.02.023. Epub 2009 Mar 10.

"Abstract Background & Aims

Patients with diarrhea-predominant IBS (IBS-D) anecdotally report symptom improvement after initiating a very low-carbohydrate diet (VLCD). This is the first study to prospectively evaluate a VLCD in IBS-D. Methods

Participants with moderate to severe IBS-D were provided a 2-week standard diet, then 4 weeks of a VLCD (20 grams of carbohydrates/day). A responder was defined as having adequate relief (AR) of gastrointestinal symptoms for 2 or more weeks during the VLCD. Changes in abdominal pain, stool habits, and quality of life (QOL) were also measured. Results

Of the 17 participants enrolled, 13 completed the study and all met the responder definition, with 10 (77%) reporting AR for all 4 VLCD weeks. Stool frequency decreased (2.6 ± 0.8/day to 1.4 ± 0.6/day; p<0.001). Stool consistency improved from diarrheal to normal form (Bristol Stool Score: 5.3 ± 0.7 to 3.8 ± 1.2; p<0.001). Pain scores and QOL measures significantly improved. Outcomes were independent of weight loss. Conclusion

A VLCD provides adequate relief, and improves abdominal pain, stool habits, and quality of life in IBS-D."

[9]

Evidence type: review

Suma Magge, MD and Anthony Lembo, MDcorresponding author
Gastroenterol Hepatol (N Y). 2012 Nov; 8(11): 739–745.

"Summary

A low-FODMAP diet appears to be effective for treatment of at least a subset of patients with IBS. FODMAPs likely induce symptoms in IBS patients due to luminal distention and visceral hypersensitivity. Whenever possible, implementation of a low-FODMAP diet should be done with the help of an experienced dietician. More research is needed to determine which patients can benefit from a low-FODMAP diet and to quantify the FODMAP content of various foods, which will help patients follow this diet effectively."

2015-05-15

Ornish Diet Worsens Heart Disease Risk: Part I

Dr. Dean Ornish has come under a lot of criticism lately for his misleading statements about diet and heart disease. See, for example: Critique of Dean Ornish Op-ed, by Nina Teicholz, and Why Almost Everything Dean Ornish Says about Nutrition Is Wrong, from Scientific American.

Ornish made his name with a study that claimed to actually reverse heart disease [1]. There are at least three problems with the study.

First, it included several confounders to the dietary regimen. For example, the intervention groups spent an hour a day on stress management techniques, such as meditation, and three hours a week exercising.

Second, although it was touted as the first study to look at "actual" heart disease results, it made no measurements of cardiac events! Instead, it was based on measuring stenosis — the degree of narrowing of coronary arteries. Considering that stenosis is only a predictor of cardiac events, it seems disingenuous to call it a direct measure of heart disease.

Stenosis is used to predict heart disease (though it is often not the previously found blockages that are ultimate culprits [2]). However, the measurement has a lot of variability. Because of this, differences in measurements over time need to be quite large to be showing a true progression or regression, and not just error. We found three studies attempting to pinpoint the minimum difference in measurements to make such a claim. They respectively recommended 15%, 9.3%, and 7.8% as a basis for this judgment [3], [4], [5].

So how much reduction of stenosis was there in Ornish's study?

"The average percentage diameter stenosis decreased from 40.0 (SD 16.9)% to 37.8 (16.5)% in the experimental group yet progressed from 42.7 (15.5)% to 46.11 (18.5)% in the control group (p = 0.001, two-tailed)."

That's the extent of the success in a year: a -2.2% change for the claim of "regression" vs. a 3.4% change for the claim of "progression". It does not reach a level of significance given the measurement tool.

Fortunately, there were other measurements taken that are also predictors of cardiac events: blood lipids. Even the AHA, an association that changes its mind slowly in response to evidence, considers triglycerides above 100 to be higher than optimal [6]. Low HDL is a strong marker of heart disease, with HDL below 40 considered by the AHA a "major heart disease risk factor" [7]. The intervention group went from an average triglyceride level of 211 to 258, and their HDL from 39 to 38. This shows that the intervention actually worsened the participants' risk factors!

Moreover, although not acknowledged by the AHA, we know that the ratio of triglycerides to HDL is a very strong predictor of heart disease; among the best [8]. A triglyceride-to-HDL level of less than 2 is considered ideal. Over 4 is considered risky. Over 6 is considered very high risk. The intervention group's average triglycerides-to-HDL ratio leapt from 5.4 to 6.8! It went from bad to worse. Thus, the third problem with the study is that it actually showed a worsening of heart disease by other important measures.

The bottom line is that Ornish's study never showed what it claimed to show.

After a year of intervention, even with other lifestyle changes incorporated, the subjects on his diet had a higher risk of heart disease than before they started.


References

[1]Ornish, Dean, et al. "Can lifestyle changes reverse coronary heart disease?: The Lifestyle Heart Trial." The Lancet 336.8708 (1990): 129-133.
[2]

Eveidence type: experiment

Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP.
Circulation. 1988 Nov;78(5 Pt 1):1157-66.

Abstract

To help determine if coronary angiography can predict the site of a future coronary occlusion that will produce a myocardial infarction, the coronary angiograms of 42 consecutive patients who had undergone coronary angiography both before and up to a month after suffering an acute myocardial infarction were evaluated. Twenty-nine patients had a newly occluded coronary artery. Twenty-five of these 29 patients had at least one artery with a greater than 50% stenosis on the initial angiogram. However, in 19 of 29 (66%) patients, the artery that subsequently occluded had less than a 50% stenosis on the first angiogram, and in 28 of 29 (97%), the stenosis was less than 70%. In every patient, at least some irregularity of the coronary wall was present on the first angiogram at the site of the subsequent coronary obstruction. In only 10 of the 29 (34%) did the infarction occur due to occlusion of the artery that previously contained the most severe stenosis. Furthermore, no correlation existed between the severity of the initial coronary stenosis and the time from the first catheterization until the infarction (r2 = 0.0005, p = NS). These data suggest that assessment of the angiographic severity of coronary stenosis may be inadequate to accurately predict the time or location of a subsequent coronary occlusion that will produce a myocardial infarction.

[3]

Evidence type: experiment

Abstract

BACKGROUND:

Clinical trials with angiographic end points have been used to assess whether interventions influence the evolution of coronary atherosclerosis because sample size requirements are much smaller than for trials with hard clinical end points. Further studies of the variability of the computer-assisted quantitative measurement techniques used in such studies would be useful to establish better standardized criteria for defining significant change.

METHODS AND RESULTS:

In 21 patients who had two arteriograms 3-189 days apart, we assessed the reproducibility of repeat quantitative measurements of 54 target lesions under four conditions: 1) same film, same frame; 2) same film, different frame; 3) same view from films obtained within 1 month; and 4) same view from films 1-6 months apart. Quantitative measurements of 2,544 stenoses were also compared with an experienced radiologist's interpretation. The standard deviation of repeat measurements of minimum diameter from the same frame was very low (0.088 mm) but increased to 0.141 mm for measurements from different frames. It did not increase further for films within 1 month but increased to 0.197 mm for films 1-6 months apart. Diameter stenosis measurements were somewhat more variable. Measurement variability for minimum diameter was independent of vessel size and stenosis severity. Experienced radiologists did not systematically overestimate or underestimate lesion severity except for mild overestimation (mean 3.3%) for stenoses > or = 70%. However, the variability between visual and quantitative measurements was two to three times higher than the variability of paired quantitative measurements from the same frame.

CONCLUSIONS:

Changes of 0.4 mm or more for minimum diameter and 15% or more for stenosis diameter (e.g., 30-45%), measured quantitatively, are recommended as criteria to define progression and regression. Approaches to data analysis for coronary arteriographic trials are discussed.

[4]

Evidence type: experiment

Brown BG1, Hillger LA, Lewis C, Zhao XQ, Sacco D, Bisson B, Fisher L.
Circulation. 1993 Mar;87(3 Suppl):II66-73.

Abstract

BACKGROUND:

Imaging trials using arteriography have been shown to be effective alternatives to clinical end point studies of atherosclerotic vascular disease progression and the effect of therapy on it. However, lack of consensus on what end point measures constitute meaningful change presents a problem for quantitative coronary arteriographic (QCA) approaches. Furthermore, standardized approaches to QCA studies have yet to be established. To address these issues, two different arteriographic approaches were compared in a clinical trial, and the degree of concordance between disease change measured by these two approaches and clinical outcomes was assessed.

METHODS AND RESULTS:

In the Familial Atherosclerosis Treatment Study (FATS) of three different lipid-lowering strategies in 120 patients, disease progression/regression was assessed by two arteriographic approaches: QCA and a semiquantitative visual approach (SQ-VIS). Lesions classified with SQ-VIS as "not," "possibly," or "definitely" changed were measured by QCA to change by 10% stenosis in 0.3%, 11%, and 81% of cases, respectively. The "best" measured value for distinguishing definite from no change was identified as 9.3% stenosis by logistic regression analysis. The primary outcome analysis of the FATS trial, using a continuous variable estimate of percent stenosis change, gave almost the same favorable result whether by QCA or SQ-VIS.

CONCLUSIONS:

The excellent agreement between these two fundamentally different methods of disease change assessment and the concordance between disease change and clinical outcomes greatly strengthens confidence both in these measurement techniques and in the overall findings of the study. These observations have important implications for the design of clinical trials with arteriographic end points.

[5]

Evidence type: experiment

Gibson CM1, Sandor T, Stone PH, Pasternak RC, Rosner B, Sacks FM.
Am J Cardiol. 1992 May 15;69(16):1286-90.

Abstract

The purpose of this study was (1) to determine a threshold for categorizing individual coronary lesions as either significantly progressing or regressing, (2) to determine whether multiple lesions within individual patients progress at independent rates, and (3) to calculate sample sizes for atherosclerosis regression trials. Seventeen patients with 46 significant lesions (2.7 lesions/patient) underwent repeat coronary arteriography 3.0 years apart. With use of the standard error of the mean change in diameter from initial to repeat catheterization across 5 pairs of consecutive end-diastolic frames, individual lesions were categorized as either significantly (p less than 0.01) progressing or regressing if there was a 0.27 mm change in minimum diameter or a 7.8 percent point change in percent stenosis. The mean diameter change of a sample of lesions can also be analyzed as a continuous variable using either the lesions or the patient as the primary unit of analysis. A lesion-specific analysis can be accomplished using a multiple regression model that accounts for the intraclass correlation (rho) in the degree of change among multiple lesions within individual patients. The intraclass correlations in percent stenosis (rho = 0.01) and minimum diameter (rho = -0.24) were low, indicating that disease progression in different lesions within individual patients is nearly independent. With use of this model, 50 patients per treatment group would permit the detection of a 5.5% difference between treatment group means in the change in minimum diameter and a 2.7% percentage point (not percent) difference in the change in percent stenosis.(ABSTRACT TRUNCATED AT 250 WORDS)

[6]

From The American Heart Association's "Scientific Statement"

"New clinical recommendations include reducing the optimal triglyceride level from <150 mg/dL to <100 mg/dL, and performing non-fasting triglyceride testing as an initial screen."

[7]

From Levels of Cholesterol

Less than 40 mg/dL for men; less than 50 mg/dL for women: Major heart disease risk factor

60 mg/dL or higher Gives some protection against heart disease

[8]

Evidence type: observational

Gaziano JM1, Hennekens CH, O'Donnell CJ, Breslow JL, Buring JE.
Circulation. 1997 Oct 21;96(8):2520-5.

Abstract

BACKGROUND:

Recent data suggest that triglyceride-rich lipoproteins may play a role in atherogenesis. However, whether triglycerides, as a marker for these lipoproteins, represent an independent risk factor for coronary heart disease remains unclear, despite extensive research. Several methodological issues have limited the interpretability of the existing data.

METHODS AND RESULTS:

We examined the interrelationships of fasting triglycerides, other lipid parameters, and nonlipid risk factors with risk of myocardial infarction among 340 cases and an equal number of age-, sex-, and community-matched control subjects. Cases were men or women of <76 years of age with no prior history of coronary disease who were discharged from one of six Boston area hospitals with the diagnosis of a confirmed myocardial infarction. In crude analyses, we observed a significant association of elevated fasting triglycerides with risk of myocardial infarction (relative risk [RR] in the highest compared with the lowest quartile=6.8; 95% confidence interval [CI]=3.8 to 12.1; P for trend <.001). Results were not materially altered after control for nonlipid coronary risk factors. As expected, the relationship was attenuated after adjustment for HDL but remained statistically significant (RR in the highest quartile=2.7; 95% confidence interval [CI]=1.4 to 5.5; P for trend=.016). Furthermore, the ratio of triglycerides to HDL was a strong predictor of myocardial infarction (RR in the highest compared with the lowest quartile=16.0; 95% CI=7.7 to 33.1; P for trend <.001).

CONCLUSIONS:

Our data indicate that fasting triglycerides, as a marker for triglyceride-rich lipoproteins, may provide valuable information about the atherogenic potential of the lipoprotein profile, particularly when considered in context of HDL levels.

2015-04-30

What about the sugars in breast milk?

Something that nearly always comes up when we talk about babies naturally being in ketosis is the fact that breast milk contains sugars — as much as 40% [1].

Some people have even argued with us that therefore babies are not in ketosis!

That objection is, of course, reasoning backwards — objecting to a fact because it doesn't fit a theory. That healthy, breastfed babies live in a state of ketosis and use the ketogenic metabolism for energy and growth is not a hypothesis; it is an empirical fact. See our article on ketogenic babies for details.

However, the fact that babies are in ketosis even while consuming a diet relatively high in carbohydrates does pose a mystery that deserves investigation. In this article, we're going to suggest one possible explanation for the mystery, but remember that this possible explanation is just a hypothesis, until someone does an experiment to test it.

In brief

We can't conclude, just because breast milk has a relatively high proportion of carbohydrates, that babies are burning a lot of carbohydrates for fuel.

  • Breast milk is full of components that are good for building brains. Infancy is a period of intense brain growth.
  • The sugars in breast milk are mostly from lactose, with small amounts in the form of oligosaccharides. Both lactose and oligosaccharides are replete with components that are crucial building blocks of brains.
  • In addition to providing materials for growing brains, other non-fuel functions of at least oligosaccharides include serving as prebiotics and fighting infection.
  • Insofar as some parts of the milk are being used for other purposes, they can't also be used as fuel.

Therefore, a plausible explanation for how babies are in ketosis while consuming a relatively high-carbohydrate food, is that those carbohydrates are not being used as fuel, but rather as building blocks for the brain, and to a lesser extent, feeding gut bacteria, and fighting infections.

Lactose

Most of the carbohydrate in breast milk is lactose, which is broken down by digestion into glucose and galactose. Galactose is an important component of some glycoproteins and glycolipids, including cerebrosides — glycolipids in the brain and nervous system. Cerebrosides made of galactose are a major component of brain tissue [2]. They are also such a large component of myelin that cerebroside synthesis has been used as a measure of myelination or remyelination [2].

It is therefore plausible that much of the galactose in breast milk is used for brain tissue and myelin synthesis [3]. In fact, glucose is itself also used for making glycolipids for brain tissue [4], [5], although ketone bodies seem to be preferred [6], [7].

Oligosaccharides

After lactose and fat, oligosaccharides are the largest component of breast milk [8]. Oligosaccharides are unique to human breast milk — other animals produce almost no oligosaccharides in their milk [9].

Oligosaccharides are thought not to function as fuel. Some have been shown to have a prebiotic role [10], [11]. Much of the oligosaccharides pass completely through the infant's digestive tract, and probably have an immune system function [12], [13]. Oligosaccharides also contain sialic acid [14], an important component in the brain used for cell-to-cell interactions, neuronal outgrowth, modifying synaptic connectivity, and memory formation [15].

Bottom line

The main point to take from all this is that many of the components of breast milk that one might presume to be used as “calories” are actually being used for other things, especially to make brains with. That includes glucose, galactose, proteins, fats, and even ketone bodies.

This could explain the fact that infants are in mild ketosis while breastfed, even though breast milk has higher carbohydrates than would support a ketogenic metabolism in an adult.


References

[1]

Calculating the macronutrients in breast milk is made very complex by not only the variation among individuals but diurnal variations, and variations over longer periods of time. It is a huge simplification to report a single value for the amount of some component of breast milk:

Whitehead RG.
Am J Clin Nutr. 1985 Feb;41(2 Suppl):447-58.

“It should be recognized, however, that we have all been guilty of adopting an oversimplified approach insofar as relating energy needs to milk volumes is concerned. The energy composition of milk is not the constant factor we have all tacitly assumed. Fat is the major energy-donating component and its concentrations vary considerably. At the beginning of each feed, from either breast, the fat content of the milk the baby receives is low, the exact level being determined by the extent to which that breast was emptied during the previous fed. As the baby feeds, fat content then rises by an amount that can be as much as 3-4-fold but the extent is very variable. There is also evidence that average fat levels vary at different times during the day in a cyclical manner. Even after one has taken account of these variables, it is still apparent that individual women have characteristically different fat concentrations in their breast milk. These complications have been extensively studied by Prentice in rural Gambian women (8, 9), and for the purpose of calculating breast milk requirements, they are almost impossible to untangle.”

Nonetheless, the standard reported amount of carbohydrate is 38―41%:

Olivia Ballard, JD, PhD (candidate) and Ardythe L. Morrow, PhD, MSc
Pediatr Clin North Am. Feb 2013; 60(1): 49–74.
https://lh5.googleusercontent.com/-4RhjKvSSG4k/VLV0rP3Ib8I/AAAAAAAAJmI/Sslu4-6mx8k/w873-h565-no/breast-milk-comp.png
[2]

From Wikipedia:

“Galactosylceramide is the principal glycosphingolipid in brain tissue. Galactosylceramides are present in all nervous tissues, and can compose up to 2% dry weight of grey matter and 12% of white matter. They are major constituents of oligodendrocytes.”

“Monogalactosylceramide is the largest single component of the myelin sheath of nerves. Cerebroside synthesis can therefore give a measurement of myelin formation or remyelination.”

[3]

I first heard this idea from this blog post: What can we learn from breast milk? Part 1: Macronutrients

“…the carbohydrate source is lactose, made of glucose and galactose. Now galactose is very special, it's not used as an energy fuel like glucose, it's used for myelin synthesis (that is making nerve insulation), this is why human breast milk is so high in lactose, for the galactose! So that ~15% becomes ~7% of calories coming from carbs for an adult (~38g @ 2000 calories).”

[4]

Evidence type: review

Edmond J.
Can J Physiol Pharmacol. 1992;70 Suppl:S118-29.

“Many studies in the decade, 1970-1980, in human infants and in the rat pup model show that both glucose and the ketone bodies, acetoacetate and D-(-)-3-hydroxybutyrate, are taken up by brain and used for energy production and as carbon sources for lipogenesis. Products of fat metabolism, free fatty acids, ketone bodies, and glycerol dominate metabolic pools in early development as a consequence of the milk diet. This recognition of a distinctive metabolic environment from the well-fed adult was taken into consideration within the last decade when methods became available to obtain and study each of the major cell populations, neurons, astrocytes, and oligodendrocytes in near homogeneous state in primary cultures. Studies on these cells made it possible to examine the distinctive metabolic properties and capabilities of each cell population to oxidize the metabolites that are available in development. Studies by many investigators on these cell populations show that all three can use glucose and the ketone bodies in respiration and for lipogenesis.”

[5]

Evidence type: non-human animal experiment

“The incorporation of 14C-label from subcutaneously injected [3-14C]acetoacetate and [U-14C]glucose into phospholipids and sphingolipids in different regions of developing rat brain was determined. In all regions, phosphatidylcholine was the lipid synthesized most readily from either substrate. The percentages of radioactivity in other phospholipids and most sphingolipids remained relatively constant throughout postnatal development. An exceptional increase in the percentage of radioactivity incorporated into cerebroside, coinciding with a decrease of incorporation into phosphatidylcholine, was first noted on day 12 and continued until a maximal level was reached between days 18 and 20 of postnatal age. These developmental changes in preferential synthesis of lipids were associated with increased demands for phospholipids and cerebroside during the early and late postnatal stages, respectively. There was no difference in accumulation of radioactivity from acetoacetate, expressed as dpm of [14C]acetoacetate recovered in phospholipids plus sphingolipids per g of tissue, among all brain regions during the first 5 days of life. During active myelination (12 to 20 days of age); however, the amount of 14C-label was highest in brain stem, ranging from 1.9- to 2.3-fold greater than values for cerebrum and thalamus. The region with the next highest accumulation was cerebellum, followed by midbrain. During the same period, brain stem was likewise the most active site of accumulation of radioactivity from 14C-labeled glucose. Higher amounts of [14C]acetoacetate label accumulated in lipids of brain stem and cerebellum, relative to midbrain, thalamus, and cerebrum, coincide with evidence that active myelination begins in the hindbrain and proceeds rostrally toward the forebrain. Ketone bodies could therefore serve as a potential source of phospholipids and sphingolipids for brain growth and maturation.”

[6]

Evidence type: non-human animal experiment

Yeh YY, Sheehan PM.
Fed Proc. 1985 Apr;44(7):2352-8.

(Emphasis ours)

“Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.”

[7]

Evidence type: non-human animal experiment

Edmond J, Auestad N, Robbins RA, Bergstrom JD.
Fed Proc. 1985 Apr;44(7):2359-64.

(Emphasis ours)

“In the course of mammalian development milk has evolved with unique characteristics as has the capacity of the neonatal rat to process this nutrient source. The primary carbon source in milk is fat, which provides two readily utilized metabolites, acetoacetate and D(-)-3-hydroxybutyrate (ketone bodies), as well as free fatty acids and glycerol. Carbohydrate provides less than 12% of the caloric content of rat milk and glucose has to be produced by the suckling rat to maintain glucose homeostasis. One would predict that glucose would be used sparingly and in pathways that cannot be satisfied by other readily available metabolites. Studies of the uptake of metabolites and the development of key enzymes for the utilization of glucose and ketone bodies by developing brain support the concept that ketone bodies are preferred substrates for the supply of carbon to respiration and lipogenesis. Astrocytes, oligodendrocytes, and neurons from developing brain all have an excellent capacity to use ketone bodies for respiration. By contrast, glucose is utilized preferentially in the hexose monophosphate shunt by all three cell populations. We are examining the requirement for ketone bodies by developing brain with the application of a system to rear rat pups artificially on a milk substitute that promotes a hypoketonemia.”

[8]

Evidence type: review

Gudiel-Urbano M1, Goñi I.
Arch Latinoam Nutr. 2001 Dec;51(4):332-9.

(Emphasis ours)

“Breast-feeding is the optimal mode of feeding for the normal full-term infant. Human milk composition knowledge has been basis for recommended dietary allowances for infants. Few studies about human milk carbohydrates have been done until the last decade. However, carbohydrates provide approximately 40-50% of the total energy content of breast milk. Quantitatively oligosaccharides are the third largest solute in human milk after lactose and fat. Each individual oligosaccharide is based on a variable combination of glucose, galactose, sialic acid, fucose and N-acetylglucosamine with many and varied linkages between them, thus accounting for the enormous number of different oligosaccharides in human milk. The oligosaccharides content in human milk varies with the duration of lactation, diurnally and with the genetic makeup of the mother. At present, a great interest in the roles of human milk oligosaccharides is raising. They act as a the soluble fibre in breast milk and their structure is available to act as competitive ligands protecting the breast-fed infant from pathogens and act as well as prebiotic. They may also act as source of sialic acid and galactose, essential for brain development. This is why today there is an increasing health and industrial interest in human milk oligosaccharides content, with the main purpose of incorporating them as new ingredients in infant nutrition.”

[9]

Evidence type: review

McVeagh P1, Miller JB.
J Paediatr Child Health. 1997 Aug;33(4):281-6.

"Abstract

"Over 100 years ago it was first deduced that a major component of human milk must be an unidentified carbohydrate that was not found in cows milk. At first this was thought to be a form of lactose and was called gynolactose. We now know that this was not a single carbohydrate but a complex mixture of approximately 130 different oligosaccharides. Although small amounts of a few oligosaccharides have been found in the milk of other mammals, this rich diversity of sugars is unique to human milk. The oligosaccharide content of human milk varies with the infant's gestation, the duration of lactation, diurnally and with the genetic makeup of the mother. Milk oligosaccharides have a number of functions that may protect the health of the breast fed infant. As they are not digested in the small intestine, they form the 'soluble' fibre of breast milk and their intact structure is available to act as competitive ligands protecting the breast-fed infant from pathogens. There is a growing list of pathogens for which a specific oligosaccharide ligand has been described in human milk. They are likely to form the model for future therapeutic and prophylactic anti-microbials. They provide substrates for bacteria in the infant colon and thereby contribute to the difference in faecal pH and faecal flora between breast and formula-fed infants. They may also be important as a source of sialic acid, essential for brain development."

[10]

Evidence type: review

Coppa GV, Bruni S, Morelli L, Soldi S, Gabrielli O.
J Clin Gastroenterol. 2004 Jul;38(6 Suppl):S80-3.

“The development of intestinal microflora in newborns is strictly related to the kind of feeding. Breast-fed infants, unlike the bottle-fed ones, have an intestinal ecosystem characterized by a strong prevalence of bifidobacteria and lactobacilli. Data available so far in the literature show that, among the numerous substances present in human milk, oligosaccharides have a clear prebiotic effect. They are quantitatively one of the main components of human milk and are only partially digested in the small intestine, so they reach the colon, where they stimulate selectively the development of bifidogenic flora. Such results have been recently proved both by characterization of oligosaccharides in breast-fed infant feces and by the study of intestinal microflora using new techniques of molecular analysis, confirming that human milk oligosaccharides represent the first prebiotics in humans.”

[11]

Evidence type: review

Coppa GV, Zampini L, Galeazzi T, Gabrielli O.
Dig Liver Dis. 2006 Dec;38 Suppl 2:S291-4.

“The microbic colonization of human intestine begins at birth, when from a sterile state the newborn is exposed to an external environment rich in various bacterial species. The kind of delivery has an important influence on the composition of the intestinal flora in the first days of life. Thereafter, the microflora is mainly influenced by the kind of feeding: breast-fed infants show a predominance of bifidobacteria and lactobacilli, whereas bottle-fed infants develop a mixed flora with a lower number of bifidobacteria. The “bifidogenic effect” of human milk is not related to a single growth-promoting substance, but rather to a complex of interacting factors. In particular the prebiotic effect has been ascribed to the low concentration of proteins and phosphates, the presence of lactoferrin, lactose, nucleotides and oligosaccharides. The real prebiotic role of each of these substances is not yet clearly defined, with the exception of oligosaccharides which undoubtedly promote a bifidobacteria-dominant microflora.”

[12]

Evidence type: review

McVeagh P, Miller JB.
J Paediatr Child Health. 1997 Aug;33(4):281-6.

(Emphasis ours)

“Over 100 years ago it was first deduced that a major component of human milk must be an unidentified carbohydrate that was not found in cows milk. At first this was thought to be a form of lactose and was called gynolactose. We now know that this was not a single carbohydrate but a complex mixture of approximately 130 different oligosaccharides. Although small amounts of a few oligosaccharides have been found in the milk of other mammals, this rich diversity of sugars is unique to human milk. The oligosaccharide content of human milk varies with the infant's gestation, the duration of lactation, diurnally and with the genetic makeup of the mother. Milk oligosaccharides have a number of functions that may protect the health of the breast fed infant. As they are not digested in the small intestine, they form the 'soluble' fibre of breast milk and their intact structure is available to act as competitive ligands protecting the breast-fed infant from pathogens. There is a growing list of pathogens for which a specific oligosaccharide ligand has been described in human milk. They are likely to form the model for future therapeutic and prophylactic anti-microbials. They provide substrates for bacteria in the infant colon and thereby contribute to the difference in faecal pH and faecal flora between breast and formula-fed infants. They may also be important as a source of sialic acid, essential for brain development.”

[13]

Evidence type: experiment

Survival of human milk oligosaccharides in the intestine of infants.
Chaturvedi P, Warren CD, Buescher CR, Pickering LK, Newburg DS.
Adv Exp Med Biol. 2001;501:315-23.

(Emphasis ours)

“Several human milk oligosaccharides inhibit human pathogens in vitro and in animal models. In an infant, the ability of these oligosaccharides to offer protection from enteric pathogens would require that they withstand structural modification as they pass through the alimentary canal or are absorbed and excreted in urine. We investigated the fate of human milk oligosaccharides during transit through the alimentary canal by determining the degree to which breast-fed infants' urine and fecal oligosaccharides resembled those of their mothers' milk. Oligosaccharide profiles of milk from 16 breast-feeding mothers were compared with profiles of stool and urine from their infants. Results were compared with endogenous oligosaccharide profiles obtained from the urine and feces of age-, parity-, and gender-matched formula-fed infants. […] Among breast-fed infants, concentrations of oligosaccharides were higher in feces than in mothers' milk, and much higher in feces than in urine. Urinary and fecal oligosaccharides from breast-fed infants resembled those in their mothers' milk. Those from formula-fed infants did not resemble human milk oligosaccharides, were found at much lower concentrations, and probably resulted from remodeling of intestinal glycoconjugates or from intestinal bacteria. Most of the human milk oligosaccharides survived transit through the gut, and some were absorbed and then excreted into the urine intact, implying that inhibition of intestinal and urinary pathogens by human milk oligosaccharides is quite likely in breast-fed infants.”

[14]

Evidence type: experiment

Nakano T1, Sugawara M, Kawakami H.
Acta Paediatr Taiwan. 2001 Jan-Feb;42(1):11-7.

“Breast milk is the best nutrient source for infants. It contains all elements needed for a normal growth and development of infants. Human milk contains a large amount of sialic acid compared with bovine milk. Sialic acid contained in oligosaccharides, glycolipids and glycoproteins in milk is considered to play important roles in physiological functions in infancy. Thus, we have investigated the sialic acid composition and the functions of sialylated compounds in human milk. Sialic acids comprise a family of neuraminic acid derivatives present in secretions, fluids and tissues of mammals. In milk, sialic acid is present in different sialoglycoconjugate compounds such as oligosaccharides, glycolipids and glycoproteins, not in a free form. Human milk contains 0.3-1.5 mg/ml of sialic acid. Sialic acid bound to oligosaccharides accounts for about 75% of the total sialic acid contained in human milk. Most of the sialic acid contained in human milk is found in the form of sialyllactose, an oligosaccharide formed from lactose and sialic acid. In milk, gangliosides, sialic acid-containing glycolipid, occur mainly as monosialoganglioside 3 (GM3) and disialoganglioside 3 (GD3). The concentration of GM3 in human milk increases, while that of GD3 concentration decreases during lactation. Because the brain and central nervous system contain considerable level of sialic acid in infancy, it is considered to play important roles on the expression and development of their functions. Moreover, we found that some sialylated compounds had inhibited the adhesion of toxins, bacteria and viruses to the receptors on the surface of epithelial cells. Additionally, we found that some sialylated compounds had growth-promoting effects on bifidobacteria and lactobacilli, predominantly present in the intestinal flora of infants fed with human milk. The results suggested that sialylated compounds in human milk possibly behaved as a physiological component in the intestinal tract of infants to protect them against enteric infections.”

[15]

Evidence type: review

Wang B.
Annu Rev Nutr. 2009;29:177-222. doi: 10.1146/annurev.nutr.28.061807.155515.

“The rapid growth of infant brains places an exceptionally high demand on the supply of nutrients from the diet, particularly for preterm infants. Sialic acid (Sia) is an essential component of brain gangliosides and the polysialic acid (polySia) chains that modify neural cell adhesion molecules (NCAM). Sia levels are high in human breast milk, predominately as N-acetylneuraminic acid (Neu5Ac). In contrast, infant formulas contain a low level of Sia consisting of both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). Neu5Gc is implicated in some human inflammatory diseases. Brain gangliosides and polysialylated NCAM play crucial roles in cell-to-cell interactions, neuronal outgrowth, modifying synaptic connectivity, and memory formation. In piglets, a diet rich in Sia increases the level of brain Sia and the expression of two learning-related genes and enhances learning and memory. The purpose of this review is to summarize the evidence showing the importance of dietary Sia as an essential nutrient for brain development and cognition.”